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Abstract. We study an elementary two-player card game where in each round players compare cards
and the holder of the card with the smaller value wins. Using the rate equations approach, we treat
the stochastic version of the game in which cards are drawn randomly. We obtain an exact solution
for arbitrary initial conditions. In general, the game approaches a steady state where the card value
densities of the two players are proportional to each other. The leading small value behavior of the initial
densities determines the corresponding proportionality constant, while the next correction governs the
asymptotic time dependence. The relaxation toward the steady state exhibits a rich behavior, e.g., it may
be algebraically slow or exponentially fast. Moreover, in ruin situations where one player eventually wins
all cards, the game may even end in a finite time.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 51.10.+y Kinetic and transport theory of gases – 89.65.-s Social systems

Numerous phenomena in social and economic sciences in-
volve multiple interacting agents. The interaction between
these agents often leads to exchange of quantities such as
capital, goods, political opinions, etc. [1–5]. Games are
widely employed in modelling collective behavior espe-
cially in the context of economics [6], with recent exam-
ples ranging from evolution of trading strategies in a stock
market [7–9] to bidding in auctions [10]. Games can of-
ten be regarded as many body exchange processes resem-
bling collision processes [11], and therefore their dynamics
may be described by suitably adapted kinetic theories [12].
Here, we investigate a stochastic null strategy card game.
By considering the “thermodynamic limit” where the ini-
tial number of cards is infinite, we show that rate equa-
tions provide a natural framework for analyzing game dy-
namics.

This study was motivated by a recent auction bidding
model where two agents compare bids. The agent offer-
ing the smaller bid wins, and the second agent replaces
the losing bid with a randomly drawn bid [10]. This auc-
tion model demonstrates the utility of rate equations in
describing game dynamics. The corresponding rate equa-
tions admit a family of steady state solutions and numeric
integration shows that the dynamics selects one particular
solution [10]. In this study, we consider a natural simplifi-
cation of this model which is characterized by additional
conservation laws. We show that the dynamics become an-
alytically tractable, and we relate the selection criteria to
extremal statistics of the initial conditions.
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Our toy auction model is nothing but a stochastic
adaptation of the elementary card game “war”. This two-
player game is defined as follows. Each player starts with
a certain number of cards. At each round players draw
a card randomly from their deck and compare the card
values. The holder of the card with the smallest value
wins the round and gets both cards. This is repeated ad
infinitum or until one of the players gains all cards. We
primarily consider continuous distributions of card values
where there is a winner in each round.

Our main result is that one specific aspect of the initial
card distribution, namely the small value extremal statis-
tics governs the dynamics of the game. Let us denote by A
and B the two players, and let the initial card value densi-
ties be a0(x) and b0(x), respectively. In the long time limit,
a steady state is approached with the card value densities
of both players being equal to a fraction of the total card
value density. For instance, the limiting card value density
of player A is a∞(x) = α[a0(x) + b0(x)]. While a family
of steady state solutions characterized by the parameter
0 ≤ α ≤ 1 is in principle possible, the leading small value
behavior of the initial distributions selects a specific value
α = limx→0

a0(x)
a0(x)+b0(x) . Moreover, the next leading cor-

rection determines how the system approaches the steady
state. The corresponding time dependent behavior may
be algebraic or exponential. Interesting behaviors also oc-
cur when one player captures all cards. In this case, the
game duration may be finite or infinite. Additionally, us-
ing numerical simulations we show that the theoretical
predictions concerning the game duration extend to de-
terministic realizations of the game.
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Let the initial numbers of cards of player A whose val-
ues lie in the range (x, x+ dx) be NA(x)dx (and similarly
for B), and let the total number of cards be N . We shall
take the thermodynamic limit NA(x), NB(x), N →∞ and
focus on a(x, t) and b(x, t), the densities of cards with
value x at time t for players A and B, respectively. These
densities evolve according to the rate equations

∂

∂t
a(x, t) = R(x, t),

∂

∂t
b(x, t) = −R(x, t), (1)

with the gain (loss) term R(x, t) given by

R =
1

A(t)B(t)

[
b(x, t)

∫ x

0

dy a(y, t)− a(x, t)
∫ x

0

dy b(y, t)
]
.

Here

A(t) =
∫ ∞

0

dxa(x, t), B(t) =
∫ ∞

0

dx b(x, t) (2)

are the fraction of cards possessed by players A and B,
respectively. Clearly,

A(t) +B(t) = 1. (3)

The rate equations (1) reflect the nature of the game as
the rate by which player A gains (loses) cards of value x is
proportional to the fraction of his opponent’s cards with
value larger (smaller) than x. As mentioned above, there
is always a winner as the cards are never identical when
the value x is continuous (the complementary discrete case
is treated separately). The overall factor [A(t)B(t)]−1 en-
sures that on average, every opposing pair of cards comes
into play once per unit time. The minimal card value was
tacitly set to zero as the process is invariant under the
transformation x→ x+ const.

Besides the obvious conservation law (3), two other
conservation laws underlie the process. First, the total
number of cards of a given value is conserved,

a(x, t) + b(x, t) = u0(x), (4)

where u0(x) = a0(x) + b0(x) is the initial total den-
sity (a0(x) ≡ a(x, t = 0), and similarly for B). Second,
the density of the minimal card value remains constant
throughout the evolution: a(0, t) = a0(0).

To determine the steady state behavior we introduce
the cumulative distributions A(x, t) =

∫ x
0 dy a(y, t) and

B(x, t) =
∫ x

0 dy b(y, t). These cumulative distributions sat-
isfy A′/A = B′/B in the long time limit. Therefore,
A∞(x) ∝ B∞(x), and consequently, the limiting card
value densities, a∞(x) = A′∞(x) and b∞(x) = B′∞(x), are
proportional to each other. The conservation law (4) im-
plies that each limiting card density equals a fraction of
the total card value density

a∞(x) = αu0(x), b∞(x) = (1− α)u0(x). (5)

In principle, for a given total card value density u0(x),
there is a family of steady state solutions characterized
by the parameter α which lies in the range 0 ≤ α ≤ 1.

Moreover, initial conditions where the densities are pro-
portional to each other, do not evolve regardless of α. Still,
for a given initial condition a specific α is selected. The
selected α is easily found for a class of initial conditions
with non-vanishing minimal card densities, u0(0) > 0.
Consider the density of the smallest-value cards (x =
0). Equation (5) gives a∞(0) = αu0(0), while the sec-
ond conservation law implies a∞(0) = a0(0), and hence
α = a0(0)/[a0(0) + b0(0)]. This simple argument demon-
strates that the density of the smallest-value cards gov-
erns the outcome of the game. In the following, we solve
for the full time dependent behavior and show that in
general, the small-x asymptotics of the two distributions
dictates the magnitude of α.

To solve the time dependent behavior, we make two
simplifying transformations. First, the overall rate by
which the exchange occurs [A(t)B(t)]−1 can be absorbed
into a modified time variable τ , defined via

τ =
∫ t

0

ds [A(s)B(s)]−1 . (6)

The second transformation essentially reduces any total
density u0(x) to a uniform density by introducing the vari-
able ξ

ξ =
∫ x

0

dy u0(y). (7)

The transformed card value densities, ā(ξ, τ) and b̄(ξ, τ),
are found from the relations ā(ξ, τ) dξ = a(x, t) dx and
b̄(ξ, τ) dξ = b(x, t) dx. Clearly, the transformed densities
satisfy ā(ξ, τ) = a(x, t)/u0(x) and b̄(ξ, τ) = b(x, t)/u0(x).
In the following, we shall omit the bar. The conservation
law (4) becomes

a(ξ, τ) + b(ξ, τ) = 1, (8)

i.e., the transformed total density is uniform on the inter-
val [0,1] (note that Eqs. (3) and (7) imply 0 ≤ ξ ≤ 1).

The above transformations simplify the evolution
equations, and given the linear dependence (8), it suffices
to solve for a

∂

∂τ
a(ξ, τ) = b(ξ, τ)

∫ ξ

0

dη a(η, τ) − a(ξ, τ)
∫ ξ

0

dη b(η, τ).

Replacing b(ξ, τ) with 1 − a(ξ, τ) linearizes this equa-
tion ∂

∂τ a(ξ, τ) =
∫ ξ

0 dη a(η, τ)− ξa(ξ, τ), and differentiat-
ing with respect to ξ yields further simplification(

∂

∂τ
+ ξ

)
∂

∂ξ
a(ξ, τ) = 0. (9)

Integrating over τ and then over ξ we arrive at our primary
result, the exact time dependent solution for arbitrary ini-
tial conditions:

a(ξ, τ) = α+
∫ ξ

0

dη a′0(η) e−ητ . (10)
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Hereinafter we utilize the notations a0(ξ) ≡ a(ξ, τ = 0),
a′0(ξ) ≡ d

dξa0(ξ), and α = a0(ξ = 0).
Let us again consider the steady state. In the long time

limit τ → ∞, the integral in (10) vanishes and the den-
sities become uniform a(ξ, τ) → α and b(ξ, τ) → 1 − α.
Hence, in terms of the original variable x, both densities
are proportional to u0(x) according to equation (5), with
α = a0(ξ = 0) = a0(x = 0)/u0(x = 0). Even when u0(x)
vanishes or diverges as x → 0, the parameter α is well-
defined and using l’Hopital rule, it is given by

α = lim
x→0

a0(x)
a0(x) + b0(x)

· (11)

Thus, if the two distributions exhibit different leading be-
haviors, say limx→0 b0(x)/a0(x) = 0, then player A even-
tually ruins player B. Hence, from the x→ 0 asymptotics
of the initial densities one can infer which of the family of
solutions (5) is eventually selected by the dynamics.

We now study the approach to the steady state. First,
we analyze the temporal behavior of the total fractions
of cards possessed by each player. For example, the frac-
tion of cards possessed by player A is A(τ) =

∫ 1

0
dξ a(ξ, τ).

Combining this with equation (10) we obtain

A(τ) = α+
∫ 1

0

dξ (1− ξ) a′0(ξ) e−ξτ . (12)

While the steady state behavior is determined by the lead-
ing small argument behavior of a0(ξ), the relaxation to-
ward the final state is governed by the correction to the
leading behavior. Let us consider the following small ar-
gument behavior

a0(ξ) ' α+ γξδ ξ → 0, (13)

with δ > 0. Substituting this into equation (12) we arrive
at a simple power-law behavior:A(τ) − α ' γΓ (δ + 1)τ−δ
where Γ (a) is the Gamma function.

In terms of the actual time variable t, a richer variety
of behaviors is exhibited. First, suppose that the system
approaches an active steady state, i.e., 0 < α < 1. Then
from equation (6) we obtain t→ α(1− α)τ , and therefore
the above asymptotics of A(τ) becomes

A(t) − α ' Ct−δ, t→∞ (14)

with C = γΓ (δ + 1)[α(1 − α)]δ. Hence, when the system
reaches the active steady state the approach is generally
algebraic.

Next, suppose that one player, say A, eventually ruins
the opponent, i.e., α = 1. Then dt/dτ ∼ B(τ) ∼ τ−δ and
consequently, t ∼ τ1−δ. Therefore, for δ ≤ 1 representing
weak initial advantage of the eventual winner, the game
duration is infinite:

1− A(t) ∼
{
t−

δ
1−δ δ < 1;

e−const×t δ = 1.
(15)

In the complementary situation of strong initial advantage
for the eventual winner, δ > 1, the game duration is finite:

A(tf ) = 1. (16)

The terminal time can be determined from the integral
tf =

∫∞
0 dτA(τ) [1−A(τ)]. Using equation (12) and re-

calling that α = 1 yields this time as an explicit function
of the initial conditions

tf = −
∫ 1

0

dξ
1− ξ
ξ

a′0(ξ)

−
∫ 1

0

∫ 1

0

dξ1 dξ2
(1− ξ1)(1− ξ2)

ξ1 + ξ2
a′0(ξ1) a′0(ξ2). (17)

For example, the initial density a0(ξ) = 1− ξ2 yields tf =
2
15 + 16

15 ln 2 ≈ 0.87269. Additionally, the time dependent
approach toward the final state is algebraic,

1−A(t) ∼ (tf − t)
δ
δ−1 , (18)

sufficiently close to the terminal time t→ tf . As expected,
the density decreases linearly with time when the disparity
between the two players becomes very large in the limit
δ →∞.

Thus if the system approaches a trivial steady state
with one player winning all cards, the temporal behav-
ior can be algebraically slow or exponentially fast. More-
over, every positive power can be realized. Remarkably, if
the initial disparity between the two players is sufficiently
large, the game ends in a finite time. Interestingly, such
disparity is expressed solely in terms of the density of the
cards with the smallest value while the initial densities of
the rest of the cards are irrelevant to the game outcome.

Next, we analyze the time dependent evolution of the
entire card value density. Evaluating the leading behavior
of the density (10) in the long time limit, we find that the
density exhibits a boundary layer structure

a(ξ, τ) − α '
{
γξδ ξ � τ−1;
γΓ (δ + 1)τ−δ ξ � τ−1.

(19)

Thus, the initial densities of cards whose values exceed
the (decreasing) threshold value ξ0 ∼ τ−1 are already for-
gotten, the density a(ξ, τ) is uniform and the remnant
relaxation is indistinguishable from the relaxation of the
total fraction of cards A(τ). In contrast, cards whose val-
ues are smaller than the threshold value ξ0 ∼ τ−1 have
yet to exchange hands and hence, are still dominated by
the initial distribution.

We now briefly discuss the case where the number of
card values is finite, say equals to k. Here, rounds may
end in a draw and in such a case both players simply keep
their cards. Mathematically, the card value densities are
discrete distributions

a(x, t) =
k∑

n=1

an(t)δ(x− xn), (20)

b(x, t) =
k∑

n=1

bn(t)δ(x− xn),

with x1 = 0 and xn < xn+1. The discrete version of the
rate equations can be written and solved directly using a
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series of transformation which mimics the ones used above.
Instead, we shall substitute the initial conditions (20) into
the general continuous case solution (10).

Denote by un(t) = un(0) = an(0) + bn(0) the total
(time-independent) concentration of the value xn. The
variable ξn =

∑n−1
m=1 um(0) plays the role of ξ and the time

variable τ remains as in equation (6). The solution (10)
reads

an(τ)
un(0)

=
a1(0)
u1(0)

+
n∑

m=2

(
am(0)
um(0)

− am−1(0)
um−1(0)

)
e−ξmτ . (21)

Since all terms in the summation eventually vanish, the
two players card densities approach a limiting distribution
which is proportional to the initial distribution an(∞) =
αun(0) with α = a1(0)/u1(0), in accordance with equa-
tion (11). In general, the approach to the steady state is
exponential. We first discuss the case 0 < α < 1. Since
A∞ = α, we have t → α(1 − α)τ asymptotically. Hence,
the relaxation toward the steady state is exponential

A(t)− α ∼ e−const.×t. (22)

In the complementary case when one player wins all cards,
α = 1, the approach is dominated by the first non-
vanishing term in the summation, namely, the first non-
vanishing bn(0). In this case, dt/dτ ∝ exp(−const. × τ),
and consequently, the game duration is finite as in equa-
tion (16). Thus the behavior in the discrete case is different
from the continuous case in that the time dependent be-
havior is generally exponential. An additional difference is
that when one player captures all cards, the game duration
is always finite.

All previous results apply to games with an infinite
number of cards. We now discuss how to adapt these re-
sults to realistic situations when both players start with
a finite number, say N , cards. Note that the time unit
used earlier corresponds to approximately N2 rounds in
the actual game (fluctuations are of order N and thus can
be ignored when N is sufficiently large). For the case δ > 1
one therefore predicts a duration

Tf ∼ N2, (23)

where Tf is the number of rounds. The duration in the
marginal δ = 1 case can be estimated using the aver-
age time it takes for player B to get down to one card
B(t) = N−1. Utilizing the exponential decay of B(t), we
find that there is an additional logarithmic dependence,
Tf ∼ N2 lnN , in this case.

Results of Monte Carlo simulations are consistent with
these predictions. In the simulations, each player starts
with N cards whose values are drawn from a uniform dis-
tribution in the range 0 < x < 1. Eventually, the player
holding the smallest-value card wins. Our theory describes
the stochastic realization of the game where cards are
drawn randomly from the deck. We also examined the
deterministic case where the card order is fixed through-
out the game. In this version, the winner of a round places
both cards at the bottom of the deck. In both cases, we
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Fig. 1. Duration of the game as a function of the number of
cards. Shown is Tf the number of rounds a game lasts on aver-
age versus N , the initial number of cards. The results represent
an average over 104 realizations. A line of slope 2 is plotted for
reference.

find diffusive terminal times as in equation (23). Neverthe-
less, the two cases differ with the stochastic game ending
faster than the deterministic one (see Fig. 1). Addition-
ally, we find that fluctuations in the terminal time are
proportional to the mean: 〈T 2

f 〉 − 〈Tf〉2 ∝ 〈Tf〉2.

In closing, we studied a stochastic two-player card
game using the rate equations approach. We found that
extremal characteristics of the initial conditions select a
particular steady state out of a family of possible solu-
tions. Eventually, the card value densities of the players
become proportional to each other. However, the players
generally possess different overall number of cards and it is
even possible that one player gains all cards. The approach
toward the steady state exhibits rich behavior. Large value
cards tend to equilibrate faster than small value cards, and
the distribution develops a boundary layer structure. The
time dependent behavior of the total fractions of card pos-
sessed by each player is algebraic in cases where an active
steady state is approached. In the complementary case
where one player gains all cards, the game may end in a
finite or an infinite time. The relative initial advantage of
the winner, characterized by the correction to the leading
extremal behavior, determines the game duration in this
case.
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